3D Printed Gyroid Elastomer and Silicone Composite for Controlled Anisotropy for Simulating Human Tissue

<u>Presenter:</u> Yu Ming Li, Material Science, Graduate Student <u>Researchers:</u> Po-Han Chen, Mechanical Engineering, Graduate Student Shengfan Hu, Electrical Engineering, Graduate Student Raphaelle Paracuellos, Bioengineering, Undergraduate Student <u>Advisor:</u> Professor Frank E. Talke <u>Physicians:</u> Dr. Jyoti Mayadev, Dr. Milan Makale

Outline

- Introduction
- Composite Structure
 - Materials Used
 - 3D Printed Pattern
- Material Behavior Results
- Summary

Medical Background

Radiation Induced Vaginal Stenosis

Common complication for cervical cancer treatment
Treatable with medical intervention

Medical Background

- Dilators are the prescribed treatment but...
- 80% of patients quit in 4 months

Patient friendly dilator:

- Continuous variable
- Conforms to patients anatomy
- Track progress

Medical Phantom of The Vaginal Canal

Medical phantoms are non-organic organ analog used for:

- Physician training
- Medical device calibration
- *Ex vivo* Medical device testing and validation

Research goal: Develop a biomechanically accurate vaginal phantom for testing vaginal dilators

Medical Phantom of The Vaginal Canal

Basic vaginal phantom
Silicone
Our approach
Silicone Composite

Medical Phantom of The Vaginal Canal

Collagen fibers

Human soft tissue is <u>stress</u> <u>hardening</u> and <u>anisotropic</u>

We want to design a material that simulates human tissue properties

Design New Composite Material

Composite Structure

The new material composed of stiff Thermoplastic Polyurethane (TPU) scaffold and soft silicone matrix.

Composite Structure

3D printed TPU scaffolding

 \equiv

A CONTRACT

Liquid silicone resin Resultant material

Manufacturing of Composite Materials

3D Printed Scaffolds

- Allows rapid manufacturing of complex geometric shapes
- Print at different volume percentages, hardness, and distortion
- Bending to stretching deformation transition

Initial Results

Extended Material Testing

Stiffness and anisotropy can be changed by gyroid parameters

$t = \sin(x^2\pi/A)\cos(y^2\pi/B) + \sin(y^2\pi/B)\cos(z^2\pi/C)$

Scaffold Density $sin(z^*2\pi/C)cos(x^*2\pi/A)$

÷

A,B,C = 1

A,B,C = 2

Anisotropy

To mimic tissue anisotropy caused by collagen orientation

• Use anisotropic scaffold structures

$t = \sin(x^2\pi/A)\cos(y^2\pi/B) + \sin(y^2\pi/B)\cos(z^2\pi/C)$

sin(z*2π/C)cos(x*2π/A) Anisotropy

÷

A,B,C = 1

 $\begin{array}{l} \mathsf{A},\mathsf{C}=1\\ \mathsf{B}=2 \end{array}$

Manufacturing of Composite Materials

Polyurethane

Gyroid Scaffold

Silicone Matrix

1)	Print and
	trim

2) Insert to mold

3) Cast and cure silicone

Digital Image Correlation

- Complements uniaxial tensile tester
- Contactless strain measurement
- High resolution strain and displacement data

Typical Results

Summary

- A composite material was designed consisting of a polyurethane scaffold and a soft silicone matrix
- The mechanical properties of the composite material can be tuned to simulate human tissue (strain-hardening and anisotropy)
- Anisotropy and strain-hardening is determined by gyroid parameters

Future Work

- Open source scaffold generation software
- Improve strain hardening behavior of composite
- Material model for CAD of composite materials
- Finite element analysis

Questions?