

An Optical Tracking Approach to Computer-assisted Surgical Navigation via Stereoscopic Vision

Darin Tsui¹, Capalina Melentyev¹, Ananya Rajan¹, Rohan Kumar¹, Farshad Ahadian², and Frank E. Talke¹ ¹Center for Memory and Recording Research ²Center for Pain Medicine University of California San Diego

Background

- Real-time guidance to surgeons during operational procedures
 - See instrument positions relative to preoperative imaging
 - High precision \rightarrow improves success of surgery

Background

- Augmentation of traditional procedures
 - Neurosurgery
 - Orthopedic surgery
 - Maxillofacial surgery

Current Solutions

7D Surgical

••

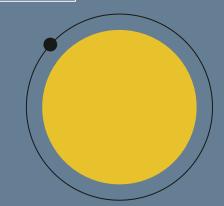
Uses machine vision to match real-time images of patients to pre-existing imaging

- Does not directly track instruments
- Cost: \$400,000 \$600,000

Stryker

Navigation is dependent on infrared markers mounted on instruments

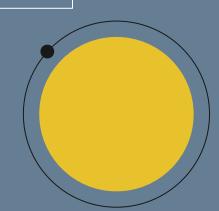
• Cost: \$250,000 - \$500,000



Maltham and Wells-Quinn, Journal of Spine Surgery, 2019

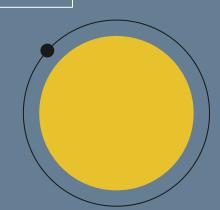
Objective

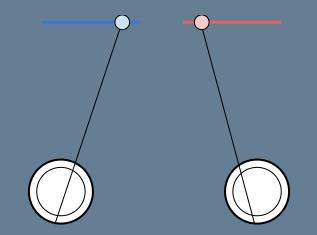
We aim to design a surgical navigation system that is: Cost-effective Radiation-exposure limiting Accurate

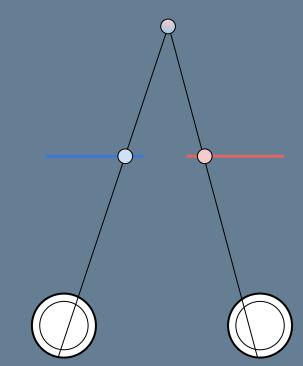


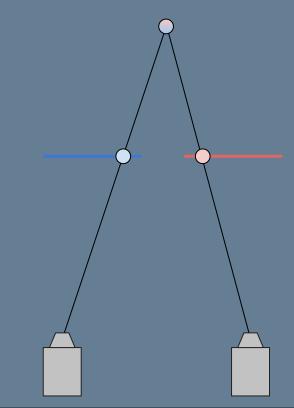
Objective

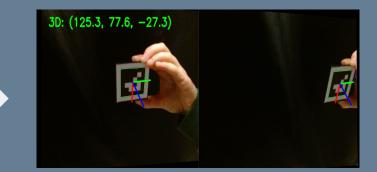
Current Proposition: Optical tracking AR navigation Design-validation

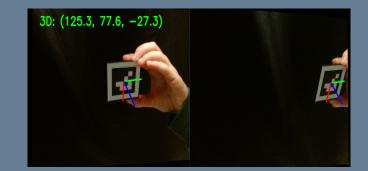


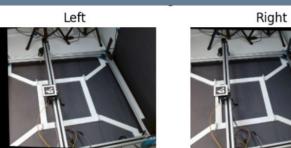

Objective


Current Proposition: Optical tracking AR navigation Design-validation

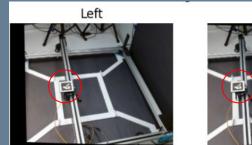






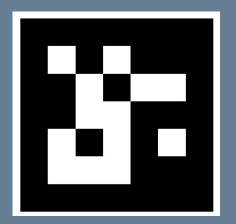


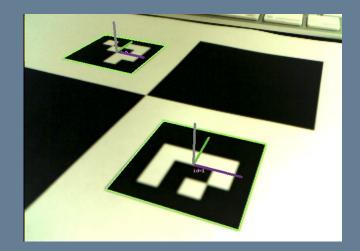
StereoSGBM



StereoSGBM

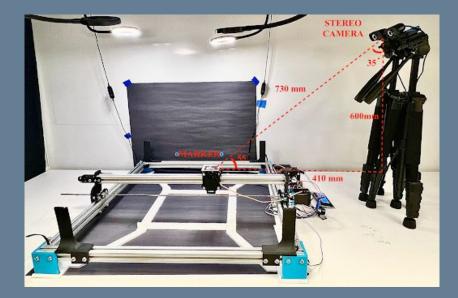
Right

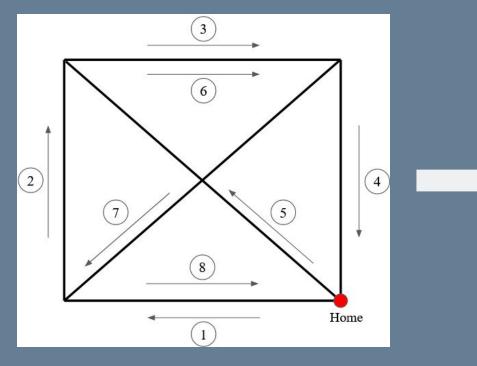


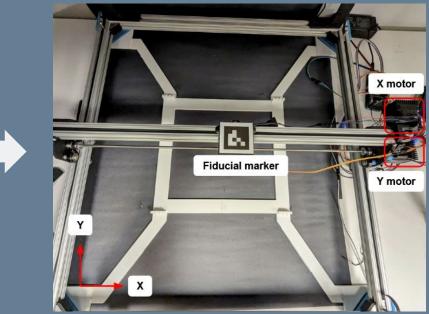

$$\frac{d = x_l - x_r}{z = \frac{fb}{d}}$$
(1)
(2)
$$x = \frac{x_l z}{f}$$
(3)
$$y = \frac{y_l z}{f}$$
(4)

$$d = x_{l} - x_{r}$$
(1)
$$z = \frac{fb}{d}$$
(2)
$$x = \frac{x_{l}z}{f}$$
(3)
$$y = \frac{y_{l}z}{f}$$
(4)

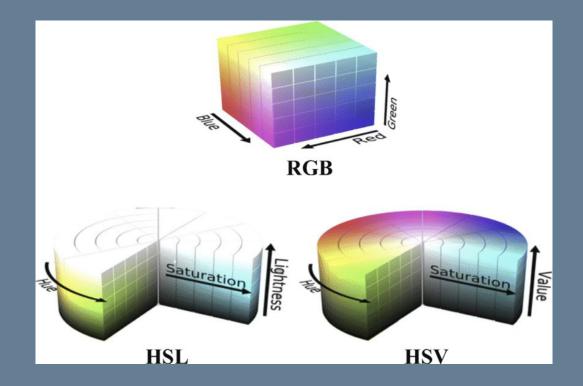
ArUco Markers

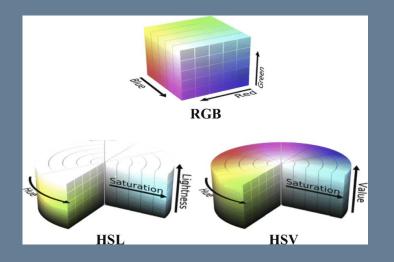



Tracking Demo



Positioning Platform


Validation



Tsui et al., EMBC 2023

Experiments

Experiments

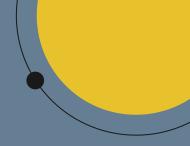
WHITE	PINK	YELLOW	ORANGE
	Π	П	П

TABLE 1: DETECTION PERCENTAGE (%) OF FOUR COLORED MARKERS IN RGB, HSL AND HSV COLOR SPACES.

Color	Color			
Space	White	Pink	Yellow	Orange
RGB	99.7	98.1	97.1	99.5
HSL	99.5	81.3	89.7	87.0
HSV	97.5	73.5	78.4	80.6

TABLE 2: MARKER TRACKING AVERAGE ERROR (MM) OF FOUR COLORED MARKERS IN RGB, HSL, AND HSV.

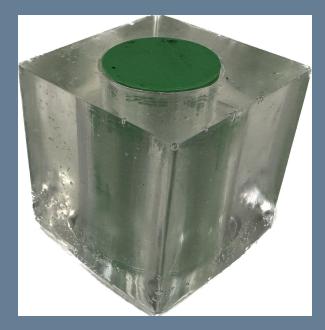
Color				
Space	White	Pink	Yellow	Orange
RGB	5.48	5.62	12.35	5.39
HSL	5.38	6.80	5.96	6.26
HSV	5.61	6.98	6.17	5.88


TABLE 1: DETECTION PERCENTAGE (%) OF FOUR COLORED MARKERS IN RGB, HSL AND HSV COLOR SPACES.

Color	Color			
Space	White	Pink	Yellow	Orange
RGB	99.7	98.1	97.1	99.5
HSL	99.5	81.3	89.7	87.0
HSV	97.5	73.5	78.4	80.6

TABLE 2: MARKER TRACKING AVERAGE ERROR (MM) OF FOUR COLORED MARKERS IN RGB, HSL, AND HSV.

Color				
Space	White	Pink	Yellow	Orange
RGB	5.48	5.62	12.35	5.39
HSL	5.38	6.80	5.96	6.26
HSV	5.61	6.98	6.17	5.88

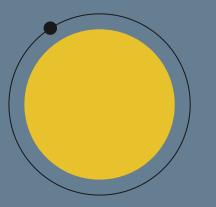

Discussion

- Our surgical navigation system is promising:
 - 5 mm of error is higher than needed for clinical use but has potential to be reduced with higher quality cameras
- Affordable:
 - We spent around 60 dollars on two web cameras
 - Minimally invasive:
 - Only requires external cameras and ArUco markers
 - What's next?

Physical Models (Cube)



Physical Models (Body Shape)



AR Application (Cube)

AR Application (Body Shape Model)

Thank you!

Darin Tsui dtsui@ucsd.edu •• •• ••