
MiaFit: Mechanotherapeutic Intravaginal Dilator for Treatment of Vaginal Stenosis

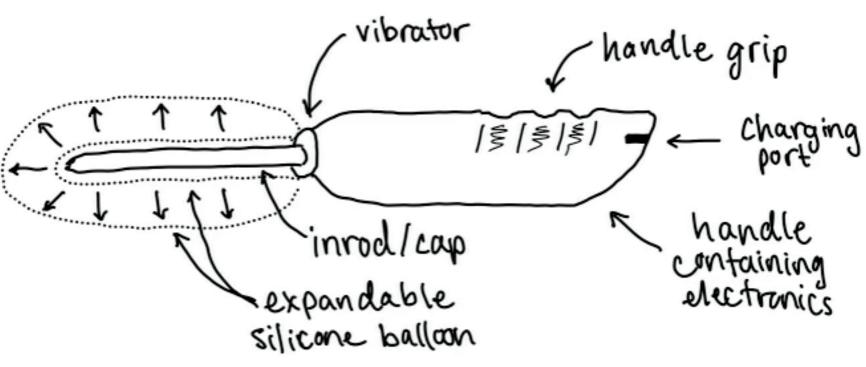
UC San Diego

JACOBS SCHOOL OF ENGINEERING Shu Chien-Gene Lay Department of Bioengineering

Background

Figure 1: **A.** Discrete-sized vaginal trainers **B.** Milli Dilator

- **Vaginal stenosis** (VS) \rightarrow narrowing and shortening of the vaginal canal caused by scarring of vaginal tissue results in physical + emotional pain
- About **half a million** people develop gynecological cancers each year, and of those patients, around 88% are diagnosed with vaginal stenosis¹
- Current treatment options have low patient adherence due to excessive pain or cost $(Fig 1)^2$


Study Aim

With this project, we have sought to develop and test a prototype of an intravaginal dilator that is expandable, easy to use, portable and affordable to diminish painful symptoms of vaginal stenosis and revolutionize vaginal dilation therapy.

Objectives

An expandable, affordable, easy-to-use dilator design aims to...

- **Resolve pain**, discomfort, and embarrassment from VDT
- **Simplify** the process of dilation, improve accessibility and usability
- Improve **adherence** to vaginal stenosis treatment options \circ consistent dilation \rightarrow remodel vaginal canal over time
- Give physicians the ability to perform **pelvic examinations** to monitor gynecological health and cancer
- Collect more **data** of gynecological conditions and efficacy of VDT

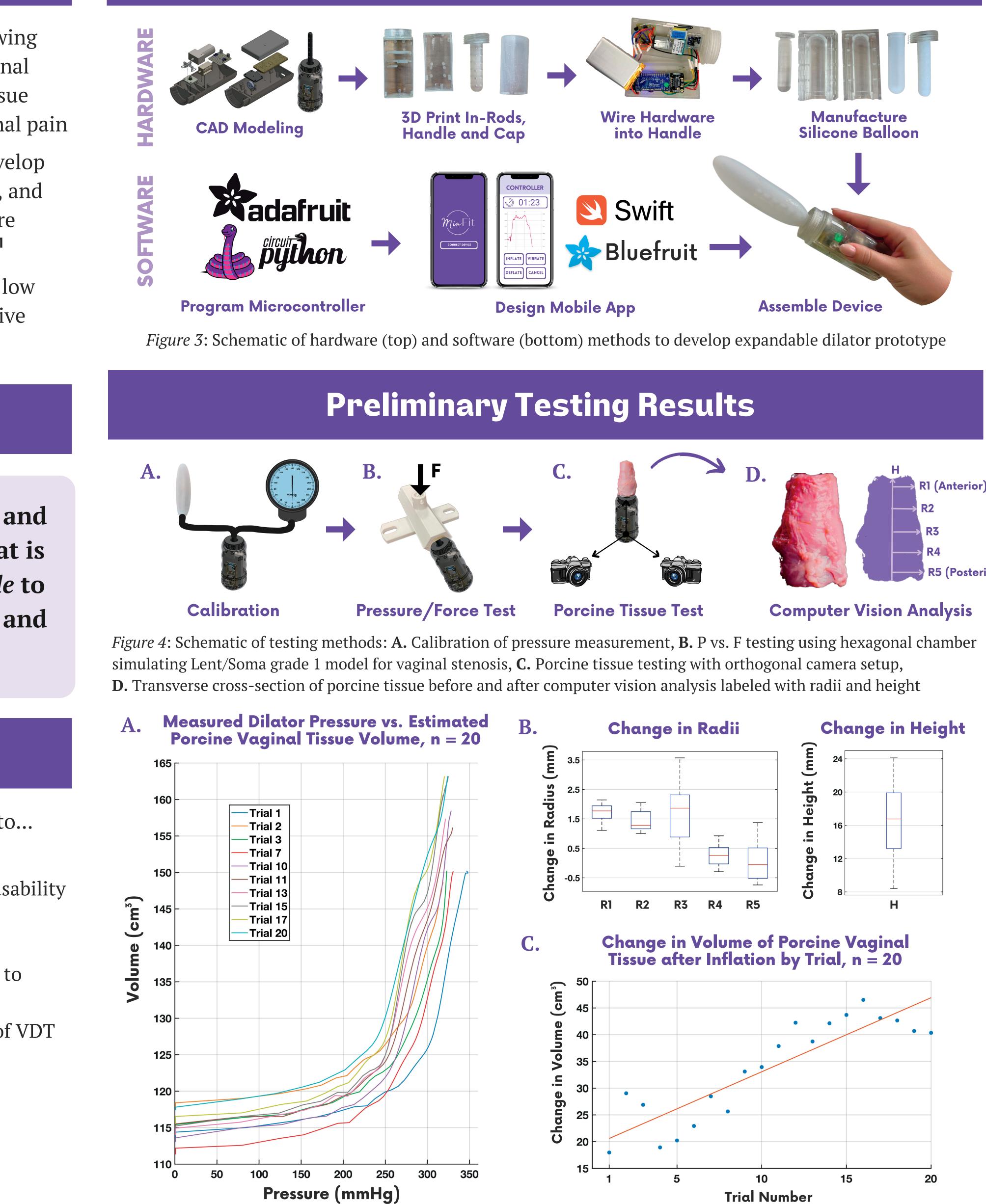


Figure 2: Labeled sketch of MiaFit dilator design


Ritika Singh¹, German Gonzalez¹, Melina Tsotras¹, Stella Kotzabasakis¹, Frank E. Talke², Melissa Ledgerwood-Lee³

1. UC San Diego, Department of Bioengineering **2.** UC San Diego, Department of Mechanical and Aerospace Engineering **3.** UC San Diego, Department of Infectious Diseases

Experimental Design

Figure 5: **A.** Measured Pressure vs Estimated Volume for 10 of 20 trials, **B.** Box and whisker plot of change in radii, n = 20, **C.** Box and whisker plot of change in height, n = 20, **D**. Change in volume after inflation of 0 to 325 mmHg, n = 20

- Dilator pressure 600 mmHg = 55 N of applied force
- Dilator pressure **331 mmHg** = **169 cm³** of Vaginal Tissue Volume = **139%** of its original size after 20 trials. (*Fig 5A*)
- During dilation, vaginal tissue experiences a greater change in radius at the **anterior** end as compared to the posterior end of the vaginal canal (*Fig 5B*)
- Vaginal tissue experiences 2.2 times more change in volume at 325 mmHg after 20 dilation trials (*Fig 5C*) \rightarrow **deformation**

- *In vivo* **animal testing** to evaluate mechanical properties of irradiated vaginal tissue and assess efficacy of VDT
- Inflation via **saline** instead of air • Impedance sensor to measure the radius of expansion • Calculate hoop stress to implement PID control system
- Improvements in **UI/UX design** of mobile application
- Adaptations to the current silicone and in-rod **manufacturing** method for more homogenous, air-tight design and more uniform inflation
- Apply device to **other gynecological conditions** (vaginismus, post-vaginoplasty care, etc.)

Acknowledgements and References

This research is supported by the **UC San Diego Bioengineering Department**. Special thanks to our mentors, Dr. Melissa Ledgerwood-Lee and Dr. Frank Talke, and our Li, Jackie Chen and Shengfan Hu.

[2] Friedman, L. et al. (2011). Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer.

Conclusions

Future Development

- supporting graduate students, Brian

^[1] Varytė, G. et al. (2021). Pelvic Radiation Therapy Induced Vaginal Stenosis: A Review of Current Modalities and Recent Treatment Advances.