Design and Validation of an Automated Dilator Prototype for the Treatment of Radiation Induced Vaginal Injury

Presenter: Rafaela Simoes-Torigoe

Advisor: Frank E. Talke, PhD

Collaborators:

Po-Han Chen

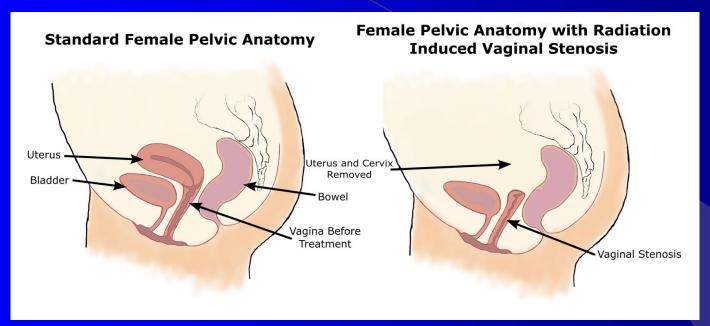
Yu M. Li

Shengfan Hu

Karcher Morris, PhD

Milan Makale, PhD

Jyoti Mayadev, MD


Overview:

- ☐ Clinical Problem: Vaginal Stenosis as a Complication of Cervical Cancer Treatment
- □ Proposed and Manufactured Solution to Vaginal Stenosis Prevention: Inflatable Vaginal Dilator System
- ☐ Initial Characterization of Dilator Prototype
- ☐ Design of a Model to Simulate Vaginal Stenosis
- Evaluation of Dilator Pressure on Tissue and Synthetic Model
- ☐ Current Progress
- **☐** Future Work

Clinical Problem: Vaginal Stenosis

- ☐ Cervical cancer affects the lives of many women every year
- □ Vaginal stenosis is a late complication of

radiotherapy/brachytherapy used to treat cervical cancer

☐ Current treatment involves the use of a standard vaginal dilator that poses patient adherence issues

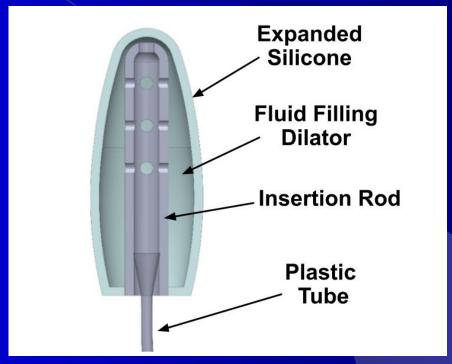
Diagnosis of Vaginal Stenosis: CTCAE

CTCAE	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Terminology					
Vaginal	Asymptomatic;	Vaginal	Vaginal	-	Death
Stricture.	mild vaginal	narrowing	narrowing		
Definition: a	shortening or	and/or	and/or		
disorder	narrowing	shortening not	shortening		
characterized by		interfering with	interfering with		
a narrowing of		the physical	the use of		
the vaginal canal		examination	tampons, sexual		
			activity or		
			physical		
			examination		

Common Terminology Criteria for Adverse Events (CTCAE) for Vaginal Stricture v5.0 (US Department of Health and Human Services)

Diagnosis of Vaginal Stenosis: LENT-SOMA

	Grade 1	Grade 2	Grade 3	Grade 4				
Objective:								
Stenosis/ length	>2/3 normal length	1/3-2/3 normal length	<1/3 normal length	Obliteration				


Radiation Therapy Oncology Group (ETOG)/ European Organization for the Research and Treatment of Cancer (EORTC) Late Effects of Normal Tissues, Subjective, Objective, Management (LENT-SOMA)

Proposed Solution

- ☐ Improved design of a vaginal dilator
 - ☐ Can be expanded through air or fluid channels
 - ☐ Can be coupled with other elements
- ☐ Used to expand vaginal canal gradually over time

Schematic of inflatable vaginal dilator

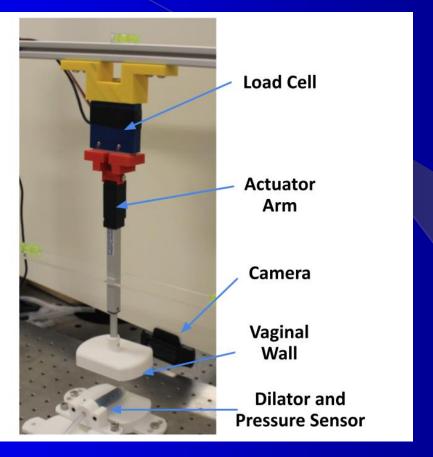
Manufacturing Steps

3D Modeling of 3-Part Mold

Additive Manufacturing

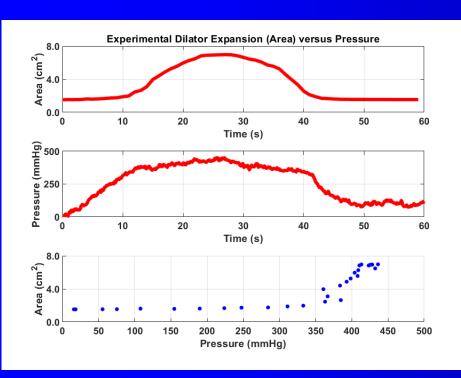
Prototype Mold

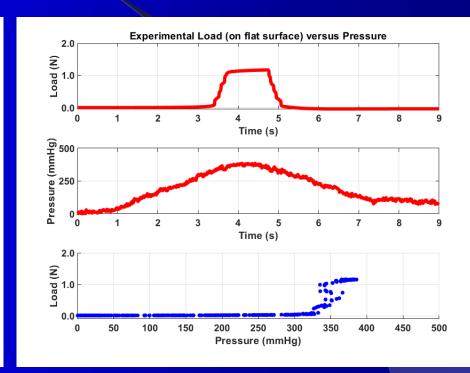
Silicone Molding Processing



Expandable Dilator with Silicone Sheath

Initial Experimental Tests




Experimental setup to measure dilator expansion versus pressure and force on the adjacent vaginal walls versus pressure

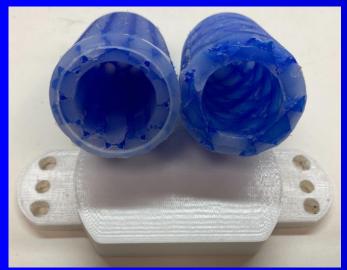
Initial Experimental Results

Dilator expansion (area) versus pressure

Load (on a flat surface) versus pressure

Current Prototypes

VS Dilation System Including Pressure Measurement and Automated Expansion



Dilator Prototypes Sizes Small,
Medium and Large

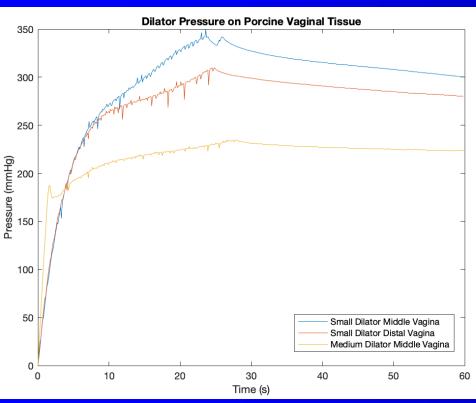
Design of Graded Vaginal Phantoms

VS Phantom Top View

Commercially Available Pelvic Simulator

Methods: Pressure Tests on Porcine Vaginal Tissue

 Small and Medium vaginal dilators tested on different portions of porcine vaginal tissue


Vaginal Dilator Prototype Tested on Porcine Vaginal Tissue

12

Dilator Pressure on Vaginal Tissue and Graded Vaginal Phantoms

Small Dilator Pressure on Varying VS Phantom Diameters 500 400 Pressure (mmHg) 200 100 Control (15mm Radius) Grade 1 (10mm Radius) 10 20 30 40 50 Time (s)

Dilator Pressure on Porcine Vaginal Tissue

Dilator Pressure on VS Phantom

Current Progress

- ☐ Uniaxial tests on porcine vaginal tissue
- ☐ Uniaxial tests on composite material used for graded vaginal phantoms
- ☐ Evaluating dilator pressure on vaginal phantoms varying in:
 - **□** diameter
 - ☐ infill density
- ☐ Iterating on VS system and dilator prototypes

Uniaxial Tests on Vaginal Tissue

Future Considerations

- ☐ Clinical testing of dilator prototypes
- ☐ Design iterations on dilator prototype
 - **☐** Apex expansion
 - **☐** Multi-chamber prototypes
- ☐ Evaluating pressure distribution along vaginal wall
- ☐ Application of active ingredients (e.g. hormones or medication)

Biocompatible Dilator Prototype

Acknowledgements

Advisor:

Dr. Frank Talke, Professor, CMRR & MAE

Researchers:

Po-Han Chen, Graduate Student, CMRR & MAE
Yu M. Li, Graduate Student, CMRR & MATS
Shengfan Hu, Graduate Student, CMRR & ECE
Raphaelle Paracuellos, Undergraduate Student, BENG
Gabrielle Scott, Undergraduate Student, MAE
Matthew Kohanfars, Former Graduate Student, CMRR & MAE

Collaborators:

Dr. Karcher Morris, Teaching Professor, UCSD & ECE

Dr. Casey W. Williamson, Physician, UCSD Moores Cancer Center

Dr. Jyoti Mayadev, Physician, UCSD Moores Cancer Center

Dr. Milan Makale, Research Scientist, Moores Cancer Center

Contact: rsimoest@ucsd.edu

